Sparse Attentive Backtracking: Long-Range Credit Assignment in Recurrent Networks

نویسندگان

  • Nan Rosemary Ke
  • Anirudh Goyal
  • Olexa Bilaniuk
  • Jonathan Binas
  • Laurent Charlin
  • Christopher Joseph Pal
  • Yoshua Bengio
چکیده

A major drawback of backpropagation through time (BPTT) is the difficulty of learning long-term dependencies, coming from having to propagate credit information backwards through every single step of the forward computation. This makes BPTT both computationally impractical and biologically implausible. For this reason, full backpropagation through time is rarely used on long sequences, and truncated backpropagation through time is used as a heuristic. However, this usually leads to biased estimates of the gradient in which longer term dependencies are ignored. Addressing this issue, we propose an alternative algorithm, Sparse Attentive Backtracking, which might also be related to principles used by brains to learn long-term dependencies. Sparse Attentive Backtracking learns an attention mechanism over the hidden states of the past and selectively backpropagates through paths with high attention weights. This allows the model to learn long term dependencies while only backtracking for a small number of time steps, not just from the recent past but also from attended relevant past states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding communities in sparse networks

Spectral algorithms based on matrix representations of networks are often used to detect communities, but classic spectral methods based on the adjacency matrix and its variants fail in sparse networks. New spectral methods based on non-backtracking random walks have recently been introduced that successfully detect communities in many sparse networks. However, the spectrum of non-backtracking ...

متن کامل

Credit Assignment through Time : Alternatives

Learning to recognize or predict sequences using long-term context has many applications. However, practical and theoretical problems are found in training recurrent neural networks to perform tasks in which input/output dependencies span long intervals. Starting from a mathematical analysis of the problem, we consider and compare alternative algorithms and architectures on tasks for which the ...

متن کامل

Credit Assignment through Time: Alternatives to Backpropagation

Learning to recognize or predict sequences using long-term context has many applications. However, practical and theoretical problems are found in training recurrent neural networks to perform tasks in which input/output dependencies span long intervals. Starting from a mathematical analysis of the problem, we consider and compare alternative algorithms and architectures on tasks for which the ...

متن کامل

Unbiased Online Recurrent Optimization

The novel Unbiased Online Recurrent Optimization (UORO) algorithm allows for online learning of general recurrent computational graphs such as recurrent network models. It works in a streaming fashion and avoids backtracking through past activations and inputs. UORO is a modification of NoBackTrack [OTC15] that bypasses the need for model sparsity and makes implementation easy in current deep l...

متن کامل

Reinforcement learning for multi-step problems

In reinforcement learning for multi-step problems, the sparse nature of the feedback aggravates the difficulty of learning to perform. This paper explores the use of a reinforcement learning architecture, leading to a discussion of reinforcement learning in terms of feature abstraction, credit-assignment, and temporal-difference learning. Issues discussed include: the conditioning of the reinfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.02326  شماره 

صفحات  -

تاریخ انتشار 2017